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The MCTDH method has been used successfully to treat the non-adiabatic
dynamics of a number of systems. These are hard problems due to the number of
modes that need to be included in a calculation, and the strong coupling between
the nuclear and electronic motion at conical intersections connecting electronic
states in these systems. In this review, an overview of the basic theory of the
method is given highlighting how it is able to treat larger systems than other
quantum dynamics methods. The vibronic coupling model Hamiltonian is also
described, which provides a good starting point for the description of these
systems. Examples of calculations made and systems treated are given. Finally,
a development of the basic MCTDH method in which some of the usual time-
dependent basis functions are replaced by Gaussian wavepackets is outlined. This
method promises not only to treat larger systems, but to provide a consistent
quantum–semiclassical framework.
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1. Introduction

Quantum dynamics simulations have become increasingly important to provide a detailed

description of a phenomenon in terms of the underlying molecular nature of the system.

Solving the time-dependent Schrödinger equation variationally using a straightforward

basis-set expansion of the wavefunction is known simply as wavepacket dynamics.

Wavepacket propagation methods are particularly attractive: they are simple to

implement, and provide easily visualizable results of the evolving system that can be

easily related to experiment. The most powerful wavepacket dynamics algorithm at
present, able to treat larger systems than the standard method, is multi-configurational

time-dependent Hartree (MCTDH). The algorithm is, however not simple to use.
The MCTDH algorithm was introduced in 1990 byMeyer, Manthe, and Cederbaum [1].

A first comprehensive description of the method – together with the first non-trivial

application (photo-dissociation of NOCl) – appeared two years later [2]. The basic theory

of MCTDH has been discussed in great detail in two review articles [3,4] and in

a forthcoming book [5], from which parts of this review are taken. Hence in the following

only an overview of MCTDH theory is given, highlighting the features that give the

method its power and flexibility.
A class of problems that have been treated with particular success by the MCTDH

method are those in which a conical intersection between potential energy surfaces
dominates the dynamics. These non-adiabatic systems – so called as they cannot be

described by a single adiabatic potential energy surface – are able to undergo radiationless

electronic state crossing on an ultrafast (femtosecond) time-scale [6,7]. In fact one of first

applications of MCTDH was to the non-adiabatic photo-dissociation of CH3I [8,9] – a five

dimensional calculation which even now is beyond the capabilities of most quantum

dynamics methods.
The signature of conical intersections are found in many spectra, particularly photo-

electron spectra [10–12], and they provide important pathways in photo-chemistry [13,14]

in systems ranging from H3 [15,16] to biologically active chromophores such as retinal

[17,18] and DNA bases [19,20]. Non-adiabatic effects are also important in electron

transfer problems [21,22].
Wavepacket dynamics simulations have a natural connection to detailed experiments

using femtochemistry laser spectroscopy, and simulations are routinely required to aid the

interpretation of these studies. The main hurdles for simulations are due to the size of the
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systems studied. Non-adiabatic phenomena are inherently multi-dimensional in nature,

often with a number of vibrational modes coupled strongly to the electronic degree of

freedom. A typical example is provided by the absorption spectrum of pyrazine (C4N2H4).

The conical intersection connecting the S1 and S2 states strongly couples five vibrational

modes to the electronic motion, and weakly couples the remaining 19 [23]. Not only is such

a system too large to simulate using standard wavepacket dynamics methods, but there is

also the problem of obtaining suitable potential energy surfaces.
A powerful, yet simple description of coupled potential surfaces is provided by the

vibronic-coupling model Hamiltonian which uses the correspondence between the

adiabatic and diabatic pictures to full effect [12]. The adiabatic picture is that provided

by the clamped-nucleus Hamiltonian, with sets of energy-ordered potential energy

surfaces provided by the electronic states. Coupling between these states is provided by

nuclear momentum-like operators. The diabatic picture is one in which a potential

energy surface is related to an electronic configuration, and so can be related to

chemical entities. Couplings are provided by potential-like operators. The surfaces in

the diabatic picture, as they are smooth, can be described by a low-order Taylor

expansion. Electronic structure calculations, however, lead to the well-defined adiabatic

surfaces.
The vibronic-coupling model, described in Section 5, thus provides a Hamiltonian for

treating non-adiabatic phenomena. In addition to its simplicity, it is in the product-form
which allows the efficient application of the MCTDH algorithm (Section 2.2). In Section 6

an example is used to show how the MCTDH method is able to treat large problems using

the model Hamiltonian: a 10-mode two-state system is straightforward, a 24-mode two-

state system is possible. After that in Section 7 examples are given of problems that have

been treated.
As the full wavefunction is obtained, it can be analysed to obtain a range of

information. The simplest are state populations and coordinate expectation values that

describe the system evolution. Spectra in the Condon approximation can also be obtained

from the autocorrelation function (Section 3). More complicated analyses are also possible

if a laser pulse is included explicitely into a calculation. These, a straightforward addition

in MCTDH [24], allow optimal control calculations, in which a laser field can be designed
to control the system evolution [25]. Alternatively, a time-resolved spectrum, such as

a time-resolved photo-electron spectrum, can be calculated [26].
An exciting development at present is the use of parametrized basis functions in the

MCTDH method. This, the G-MCTDH method, was introduced by Burghardt et al. in

1999 [27]. By using Gaussian basis functions to describe some, or all, modes it is possible to

provide better scaling and promises access to even larger systems than those accessible to

the standard MCTDH method. Connections to semi-classical and mixed quantum-

classical methods are also made. This is described in Section 8.
The Gaussian functions of the G-MCTDH method provide localized basis functions.

The algorithm thus provides the framework for direct dynamics calculations, in which the

potential energy surfaces are calculated on-the-fly using quantum chemistry programs as

and when they are needed. This is an attractive idea. By removing the need to calculate the
potential surfaces before a system can be studied, it opens up the possibility of doing

quantum dynamics calculations as simply as quantum chemistry calculations. They also

promise to be efficient for large systems, as only the relevant region of configuration space
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is searched. Such calculations are not further treated in this article, but are dealt with in
a recent review [28].

2. MCTDH theory

2.1. Wavefunction ansatz and equations of motion

The basis of the MCTDH method is the use of the following wavefunction ansatz to solve
the time-dependent Schrödinger equation for a physical system with f degrees of freedom
(DOFs) described by coordinates q1, . . . , qf :

�ðq1, . . . qf, tÞ ¼
Xn1
j1¼1

� � �
Xnp
jp¼1

Aj1...jp ðtÞ’
ð1Þ
j1
ðQ1, tÞ . . . ’ð pÞjp

ðQp, tÞ

¼
X
J

AJ�J: ð1Þ

Equation (1) is a direct product expansion of p sets of orthonormal time-dependent basis
functions {’(�)}, known as single-particle functions (SPFs). The coordinate for each set of
n� functions is a composite coordinate of one or more system coordinates

Q� ¼ ðqa, qb, . . .Þ: ð2Þ

Thus the basis functions are d-dimensional, where d is the number of system coordinates
that have been combined together and treated as one ‘‘particle’’. (Typically d¼ 1–4.)
The second line in Equation (1), defines the composite index J¼ j1 . . . jp and the Hartree
product �J. The ansatz looks similar to the standard wavepacket expansion [29–31], except
that the SPFs provide a time-dependent basis set.

Using this ansatz, a variational solution to the time-dependent Schrödinger equation is
provided by a coupled set of equations, one for the expansion coefficients:

i _A ¼ KA, ð3Þ

and one for each set of SPFs

i _uð�Þ ¼ 1� Pð�Þ
� �

qð�Þ
� ��1Hð�Þuð�Þ: ð4Þ

A matrix notation has been used with the A-coefficients and SPFs written as vectors,
i.e. uð�Þ ¼ ð’ð�Þ1 , . . . ,’ð�Þn� Þ

T.
The matrix K is the Hamiltonian operator represented in the basis of Hartree products

KJL ¼ h�J j H j �Li: ð5Þ

Thus Equation (3) has the same form as the equations of motion for standard wavepacket
propagation. The difference is that the Hamiltonian matrix is time-dependent due to the
time-dependence of the SPFs.

The equations of motion for the SPFs contain three new entities. The first is the
projector onto the space spanned by the SPFs

Pð�Þ ¼
X
j

’ð�Þj

��� E
’ð�Þj

D ���: ð6Þ
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The operator (1�P(�)) ensures that the time-derivative of the SPFs is orthogonal to the
space spanned by the functions. Thus any changes cover new regions. When the basis set is
complete, the SPFs become time-independent and the equations of motion are identical to
the standard method. If the SPFs do not provide a complete basis set, then they move so as
to provide the best possible basis for the description of the evolving wavepacket. This
optimal description is ensured by the variational method used for the derivation.

For the other two new entities it is useful to introduce the single-hole functions, �ð�Þa ,
which is the wavefunction associated with the j-th SPF of the �-th particle. As the total
wavefunction lies in the space spanned by the SPFs one can make use of the completeness
relation and write

� ¼
X
a

’ð�Þa
�� �

’ð�Þa
� ���� ¼X

a

’ð�Þa �ð�Þa : ð7Þ

To make this clear, the single-hole function for the first particle is

�ð1Þa ¼
Xn1
j2¼1

� � �
Xnp
jp¼1

Aaj2...jp’
ð2Þ
j2

. . .’ð pÞjp
: ð8Þ

The single-hole index, J�a, is also useful to keep the notation compact. The index can take
any values except for the �-th position which has a value a. Thus, there is the single-hole
coefficient AJ �a

and single-hole Hartree product �J � which allow the single-hole function to
be written

�ð�Þa ¼
X
J�

AJ�a
�J� , ð9Þ

where
P

J� is the sum over all index values keeping the value of the �-th index fixed; J� is
a composite index similar to J but with the �-th entry removed.

Using this new notation, the mean-field operator matrix, H(�) can be easily written as

H
ð�Þ
ab ¼ �ð�Þa

� ��H ���ð�Þb �: ð10Þ

The integration in the brackets is over all particles except �. This operator on the �-th
particle correlates the motion between the different sets of SPFs.

Finally, the density matrix �(�) is

�ð�Þab ¼ �ð�Þa
���ð�ÞbD E

¼
X
J�

A�J�aAJ�
b
: ð11Þ

The density matrices, which enter the equations of motion for the SPFs, Equation (4), as
its inverse, can be used to provide a useful measure of the quality of the calculation. In an
analogous way to the use of density matrices in electronic structure theory, the
eigenfunctions of this matrix are termed natural orbitals and the eigenvalues provide
populations for these functions. The lower the population, the less important the function.
As the space spanned by the natural orbitals is equivalent to that of the original SPFs,
if the population of the highest natural orbital is such that the function is effectively not
required for an accurate description of the evolving wavepacket, the MCTDH
wavefunction is of a good quality. As a rule of thumb averaged quantities such as
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expectation values and spectra are converged when the highest natural orbitals have
a population less than 10�3. Other quantities such as cross-sections are more sensitive to

errors in the wavefunction and the populations have to drop below 10�6 for converged
results.

2.2. Efficiency and memory requirements

Standard wavepacket dynamics uses a wavefunction ansatz like that of Equation (1),

except with a set of time-independent basis functions for each DOF rather than a set of
time-dependent functions for each particle. While the number of basis functions may vary

for each DOF, if N is representative of this number, then the wavefunction is represented
by N f expansion coefficients. This is the basis of the exponential increase of computer
resources with system size that plagues wavepacket dynamics. As N� 50 is reasonable,

a four-dimensional system using double-precision complex arithmetic requires nearly
100MB of memory just to store one wavefunction, while a five-dimensional system
requires of the order of 4.8GB. Clearly this scaling severely limits the size of system

treatable by these methods.
In comparison, the MCTDH wavefunction requires

memory � np þ pnNd ð12Þ

where n is characteristic of the number of SPFs for the p particles. The first term is the

number of A-coefficients. The second term is due to the representation of the SPFs
through primitive basis functions

’ð�Þj ðQ�Þ ¼
XN�

k¼1

a
ð�Þ
kj �
ð�Þ
k ðQ�Þ: ð13Þ

Typically, a discrete variable representation (DVR) is used for this. DVRs are the time-

independent bases used in standard wavepacket propagation calculations. A number of
different DVRs have been developed, suitable for use for different types of coordinates.
Examples are the harmonic oscillator DVR used for vibrational motion, Legendre DVR

for rotations, and exponential and sine DVRs used for free motion with or without
periodic boundary conditions. A related method is to use a collocation grid and FFT
methods to evaluate the kinetic energy operator. An overview of the properties of different

DVRs and FFT methods is given in Appendix B of [3].
There are two limits to be examined. The first is when p¼ f and d¼ 1, i.e. all particles

are one-dimensional. Here the first term dominates. Using reasonable values of N¼ 50 and
n¼ 10 then for f¼ 4 the MCTDH wavefunction requires a tiny 0.18MB and for f¼ 5 still

only 1.56MB. This is obviously much less than the memory required to store the full
primitive grid. The exponential wall still hits the method, however, and 153GB is needed
for each wavefunction if f¼ 10. The other limit to be studied is when all DOFs are

combined together so that only one particle is present. Thus p¼ 1 and d¼ f. In this limit
n¼ 1 and the first term in Equation (12) is always 1. The second term then dominates and

of course is simply the size of the full primitive grid, N f, as in this limit the MCTDH
method is identical to the standard wavepacket method. A single wavefunction now takes
1.5� 109GB. In between these two limits there is a trade-off between the memory required
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by the A-coefficients and that required by the SPFs. Thus, if two-dimensional particles are

used in a 10-dimensional calculation, f¼ 10, p¼ 5, d¼ 2 and the memory required is

3.4MB per wavefunction evenly distributed between the two parts.
The figures used above assume that n¼ 10 is a suitable figure regardless of how

many DOFs are combined together into each particle. This is of course not the case.

Imagine n SPFs are required for each particle in a problem where p¼ f, i.e. all

particles are one-dimensional. If a second calculation is then made using two-

dimensional particles, i.e. p¼ f/2, then ñ, the number of SPFs required in the new

calculation will be different from n, but ñ5n2 (ñ¼ dn is a reasonable rule of thumb).

The upper limit is because correlations between these modes are now included at the

SPF level. For large combinations, ñ5n is possible as in the limit that all DOFs are

combined together ñ¼ 1: only a single SPF – the exact wavefunction – is required.

When choosing which DOFs should be combined together it is thus useful to put

strongly correlated modes in one particle as this significantly reduces the number of

SPFs, and thus configurations, required. If the amount of correlation among the

DOFs is not known, one should combine DOFs which are characterized by similar

vibrational frequencies. One must be mindful, however, that the particle grid lengths

do not get too long. For a balanced calculation particles should be chosen with

similar grid lengths.
To solve the equations of motion for the A-coefficients and SPFs, Equations (3, 4), the

elements of the Hamiltonian matrix, K need to be evaluated:

’ð1Þj1 . . . ’ð pÞjp
j H j ’ð1Þk1 . . . ’ð pÞkp

D E
¼ ’ð1Þj1 . . . ’ð pÞjp

j Tþ V j ’ð1Þk1 . . . ’ð pÞkp

D E
: ð14Þ

Elements of the mean-field matrices are also required, H(�), and the techniques described

below can be used for these too.
If the basis functions are DVRs this multi-dimensional integral would be straight-

forward. A set of DVR functions along a coordinate q�, {�
(�)(q�)} has the property that

their matrix representation of the position operator, q̂�, is diagonal, i.e.

�ð�Þi j q� j �
ð�Þ
j

D E
¼ q

ð�Þ
j �ij, ð15Þ

and the values q� provide a grid of points related to the DVR functions. As a result, if there

are enough functions for the set to be effectively complete, the potential energy operator

can be taken as diagonal in this basis

�ð1Þi1 . . .�ð f Þif
j V j �ð1Þj1 . . .�ð f Þjf

D E
¼ V q

ð1Þ
j1
, . . . , q

ð f Þ
jf

� �
�i1j1 . . . �ifjf ð16Þ

and the integral is obtained by evaluating the potential energy only at the grid point

q
ð1Þ
j1
, . . . , q

ð f Þ
jf
.

The kinetic energy operator usually only acts on a single coordinate and matrix

elements can be evaluated analytically in the related finite basis representation (FBR).

The FBR-DVR transformation is then used to give {�(�)}

�ð�Þi j T� j �
ð�Þ
j

D E
¼
X
kl

U
ð�Þ
ik �ð�Þi j T� j �

ð�Þ
j

D E
U
ð�Þ
lj

� �y
: ð17Þ
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Thus the potential energy is obtained by evaluating the potential function at N f points,

and the kinetic energy by transforming N2 matrices. At no time is it necessary to evaluate

multi-dimensional integrals, and the full N2 f Hamiltonian matrix does not need to be built.
In MCTDH the potential energy matrix elements can be obtained by transforming

from the SPF basis to the DVR. Using Equation (13) and the DVR potential energy

Equation (16), this is

’ð1Þi1 . . . ’ð pÞip
j V j ’ð1Þj1 . . . ’ð pÞjp

D E
¼
X
i1...ip

X
j1...jp

a
ð1Þ�
k1i1

. . . a
ð pÞ�
kpi1

a
ð1Þ
k1j1

. . . a
ð pÞ
kpj1

V Q
ð1Þ
k1
, . . .Q

ð pÞ
kp

� �
: ð18Þ

The DVR is now being used to evaluate the multi-dimensional integral, which is equivalent

to using a quadrature procedure. The kinetic energy can also be evaluated by an analogous

transformation of the FBR representation in Equation (17).
While Equation (18) is completely general, it is unsuitable for our requirements as it

requires a transformation from the SPF basis to the full direct-product primitive grid. And

this is precisely what the MCTDH method sets out to avoid as the full primitive grid for

multi-dimensional systems has the dimensions of the standard wavepacket wavefunction

discussed above. The advantages of the DVR can be used without the crippling scaling if

the Hamiltonian is made up of products of functions with the same coordinates as the

particles of the MCTDH wavefunction

Hðq1 . . . qfÞ ¼
Xs
r¼1

crh
ð1Þ
r ðQ1Þ . . . hð pÞr ðQpÞ: ð19Þ

The multi-dimensional integrals of Equation (18) are then reduced to products of

low-dimensional integrals

’ð1Þj1 . . .’ð pÞjp
j H j ’ð1Þk1 . . . ’ð pÞkp

D E
¼
Xns
r¼1

cr ’
ð1Þ
j1
j hð1Þ j ’ð1Þk1

D E
� � � ’ð pÞjp

j hð pÞ j ’ð pÞkp

D E
ð20Þ

and these low-dimensional integrals can be easily evaluated using the particle primitive

grids which have the dimension Nd where d is the dimensionality of the particle.
An alternative approach that again avoids the use of the full primitive grid for the

integrals, but does not require the product form of the potential is the CDVR method of

Manthe [32]. This uses a time-dependent DVR to place suitable quadrature points and has

been used with particular success by Manthe and co-workers to calculate rate constants of

polyatomic molecules such as CH4þH [33] CH4þO [34].
Assuming the product representation of the Hamiltonian in Equation (19), the effort of

MCTDH can be estimated by a sum of two terms:

effort � c1sp
2npþ1 þ c2spnN

2d ð21Þ

where c1 and c2 are constants of proportionality. The first term is due to building the

mean-field matrices and calculating the time-derivative of the A-coefficients. To build the

mean-fields there are s terms in the Hamiltonian, and for each particle the A-coefficient

vector must be multiplied by the Hamiltonian matrices for all the other particles. The time-

derivative of the A-coefficients is obtained at the end of these operations for virtually no

cost. The second term is due to the operation of the Hamiltonian on the SPFs, i.e. the
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operation of the s particle operators, represented in the particle primitive grids, on each
SPF for each particle (for potential terms this becomes spnNd as the operator is diagonal in
the primitive basis). The density matrices also need to be inverted, but this effort, which
scales as n3, is insignificant compared to these two terms.

Thus, if p is large, the effort for the algorithm is dominated by the building of the
mean-field matrices. If p is small and d large the second-term, that for the propagation of
the SPFs, dominates due to the high dimensionality of the functions. Again we see the
trade between the effort required for the coefficients and the SPFs which can be altered by
suitably combining DOFs together into particles, balancing the reduced effort due to low
p with increased effort due to increasing Nd.

A final aspect of the MCTDH algorithm that affects its ability to efficiently solve the
time-dependent Schrödinger equation is the ease of integration of the equations of motion.
Wavepacket dynamics are an initial value problem. Starting from the wavepacket at t¼ 0 it
is propagated forward in time by integrating the equations of motion, which are written
above as derivatives of the time. If the derivatives are smooth functions of time, then large
time-steps can be taken. Unfortunately the MCTDH equations of motion are strongly
coupled. All the sets of SPFs depend on each other on the A-coefficients through the mean-
fields and the A-coefficients depend on the SPFs through the Hamiltonian matrix, K.
The constant-mean-field integrator has been tailored to the properties of the method [3,35].
This uses the different evolution time-scales of the mean-fields and single-particle functions
to separate the equations over a short time, and thus provide efficient integration.

2.3. Multi-state calculations

For non-adiabatic dynamics, systems have to be treated in which more than one electronic
state is involved. Two different approaches have been used to include the electronic states.
The first of these simply uses the equations of motion as written above, but with an extra
DOF added to represent the electronic degree of freedom.

�ðq1, . . . qf,�, tÞ ¼
Xn1
j1¼1

� � �
Xnp
jp¼1

Aj1...jp ðtÞ’
ð1Þ
j1
ðQ1, tÞ . . . ’ð p�1Þjp�1

ðQp�1, tÞ’
ð pÞ
jp
ð�, tÞ ð22Þ

where � labels the electronic state. As a complete set of electronic SPFs is used in general,
i.e. np¼ � where � denotes the number of electronic states, the SPFs are time-independent
and chosen as ’ð pÞjp

ð�, tÞ ¼ ��, jp . Introducing electronic state functions j�i one may re-write
the above equation as

� ¼
Xn1
j1¼1

� � �
Xnp�1
jp�1¼1

X�
�¼1

Aj1...jp�1,� ’
ð1Þ
j1

. . . ’ð p�1Þjp�1
j�i: ð23Þ

This is called the single-set formulation as one set of SPFs is used to treat the dynamics in
all the electronic states.

In contrast, the multi-set formulation uses a different set of SPFs for each state. In this
formulation, first introduced by Fang and Guo [36], one writes the wavefunction as

� ¼
X�
�¼1

�ð�Þ j�i ð24Þ
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where each component function �(�) is expanded in MCTDH form

�ð�Þðq1, . . . , qf, tÞ ¼
Xn�1
j�
1
¼1

� � �
Xn�p
j�p ¼1

A
ð�Þ
j�
1

...j�p
ðtÞ’ð1,�Þj�

1
ðQ1, tÞ . . . ’ð p, �Þj�p

ðQp, tÞ: ð25Þ

Note that different numbers of SPFs can be used for the different states, signified by the
superscript �.

The equations of motion also now require state labels:

i _A
ð�Þ
¼
X�
	¼1

Kð�	ÞA	, ð26Þ

i _uð�,�Þ ¼ 1� Pð�,�Þ
� �

qð�,�Þ
� ��1X�

	¼1

Hð�,�	Þuð�,	Þ, ð27Þ

where the superscripts on the matrices denote that the matrix elements are with
superscripted A-coefficients and SPFs. Thus, the particle Hamiltonian matrices used to
build up the Hamiltonian matrix and mean-field operators are

K
ð�	Þ
JL ¼ �

ð�Þ
J

D ���Hð�,	Þ �
ð	Þ
L

��� E
ð28Þ

and

H
ð�,�	Þ
ab ¼ �ð�,�Þa

� ��Hð�,	Þ �
ð�,	Þ
b

��� E
ð29Þ

whereH(�,	)
¼h�jHj	i denotes the (�,	) electronic component of the Hamiltonian. If � 6¼ 	

the matrices K and H are in general not square and non-Hermitian. The single set
formulation requires fewer SPFs in total, and does not have to deal with the problem that
the SPFs of different electronic states are not orthogonal to each other. In practice,
however, the multi-set formulation has proved to be the more efficient as the SPFs adapt
better to the different states and the total number of configurations required is less [37].

3. Photo-absorption spectra

Perhaps the easiest experimental observable to obtain is a photo-absorption spectrum. In
the Condon approximation, which is appropriate for steady-state conditions with incident
white light, the absorption spectrum, �(!) can be calculated from the Fourier transform of
the autocorrelation function

�ð!Þ / !

Z 1
�1

dt CðtÞei!t, ð30Þ

where the autocorrelation function is defined as

CðtÞ ¼ h�ð0Þj�ðtÞi: ð31Þ

A detailed derivation is given in [38,39].
To obtain the autocorrelation function, the ground-state wavefunction is placed on the

upper surface at the Franck–Condon point: ‘‘vertical excitation’’. This scheme is shown
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in Figure 1 for the excitation from S0 to S2 of a system in which the upper state is coupled
to a dark S1 state. This assumes that the transition dipole moment is a constant with
respect to the nuclear coordinates (Condon approximation). If this is not the case, the
initial wavepacket needs to be multiplied by the transition dipole, which can be obtained
from quantum chemistry calculations.

The wavepacket is then propagated on the excited state, i.e. it evolves under the
influence of the excited-state Hamiltonian, and C(t) is the overlap of the evolving function
with its initial form. Greater efficiency can be obtained if the initial wavepacket is real and
the Hamiltonian symmetric (H¼HT) as then [40,41]

Cð2tÞ ¼ h��ðtÞj�ðtÞi, ð32Þ

i.e. the overlap of the wavefunction at time t with itself (not its complex conjugate) gives
the autocorrelation function at time 2t. This means that C(t) is obtained over double the
time of the propagation. This is a huge saving, not only directly due to the shorter
propagation time, but also indirectly as shorter propagations require fewer SPFs.
The initial wavefunction also does not need to be stored.

Spectra from the autocorrelation function have been obtained in a number of different
systems such as photo-dissociation [40], photo-absorption [23], and photo-electron
spectra [42]. Figure 1 shows the autocorrelation function and spectrum from a four-
mode model used to investigate the photo-induced dynamics of pyrazine.
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(a)

(b)

Figure 1. Scheme for the vertical excitation of a system from the S0 state to S2. The left panel shows
the ground-state wavefunction projected into the manifold of excited states by the absorption of
a photon. (a) An autocorrelation function and (b) the absorption spectrum calculated by the Fourier
transform of the autocorrelation function.
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The main problem in obtaining spectra from the autocorrelation function is that the
Fourier transform in Equation (30) goes to infinity, whereas the simulation time is finite.
If C(t)! 0 at large times, then there is no problem. This is the case in, e.g. photo-
dissociation, but not in bound-state problems such as the example in Figure 1. To reduce
errors due to the finite length, C(t) can be multiplied by a damping function such as

gðtÞ ¼ cos

t

2T

� �
� 1�

jtj

T

� 	
ð33Þ

where �ð1� ðjtj=TÞÞ is the Heaviside function that switches from 1 to 0 at time T. This
function smoothly forces C(t) to be 0 at T. It has the effect of broadening the spectral lines.
The autocorrelation function may additionally be multiplied by the factor

f ðtÞ ¼ expð�t=�Þ: ð34Þ

This damping function is equivalent to convoluting the spectral lines with Lorentzian
functions, the width of which can be related to a homogenous broadening due to
experimental resolution [23].

4. State populations

For the interpretation of photo-chemical processes, the state populations as a function of
time are often required. The population is given by the expectation value of the state
projection operator

P� ¼ �h jP̂� �j i ¼ h�j�ih�j�i: ð35Þ

The electronic states can be defined using two different pictures: the diabatic and adiabatic.
Both contain useful information. The former can be related to the electronic
configurations of a molecule, while the latter are energy ordered states [7].

Wavepacket dynamics are usually performed in the diabatic picture, in which inter-
state couplings appear in the Hamiltonian as potential-like terms. The diabatic
populations are then straightforward to obtain. In the multi-set formulation the
wavefunction has a component for each state, Equation (24). The population of state �
is then the norm of this component

PðdÞ� ¼ k�
ð�Þk2: ð36Þ

In the single-set formulation, Equation (22), the populations can be obtained from the
density matrix for the electronic degree of freedom.

The adiabatic populations are not so easy to obtain. The diabatic and adiabatic
wavefunctions are related by a position dependent unitary transformation

) ðaÞðQÞ ¼ UðQÞ)ðdÞðQÞ ð37Þ

where the rotation matrix is given by the eigenvectors of the diabatic potential energy
matrix at the point. This matrix transforms the diabatic potential matrix, W, to the
diagonal adiabatic potential matrix, V

UyðQÞWUðQÞ ¼ VðQÞ: ð38Þ
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Thus the projection operator for the adiabatic state � is

P̂ðaÞ� ¼
X
	,�

j	iUy	�U��h�j: ð39Þ

Unfortunately this operator does not have the MCTDH product-form because it is

a complicated, non-separable function of the coordinates Q. To avoid having to

transform the wavefunction from the diabatic to adiabatic representation using the full

primitive grid, one may use the potfit algorithm [3,43,44] to transform the projector to

product form. This has been done successfully for a 6D model of ethene [45].

Unfortunately, this approach is limited to systems with no more than six or seven

degrees of freedom, because the potfit algorithm needs to keep the function to be

re-fitted – in general a potential but in this case P̂ðaÞ� , the electronic matrix-element of the

projector – in memory. For larger systems one has to turn to other, more approximate

methods. Fortunately, the accuracy required for state populations is not high and so

Monte Carlo integration can be used to solve the multi-dimensional integral in

Equation (35). In [46] Monte Carlo integration was used to obtain adiabatic populations

for a 14-dimensional system.

5. The vibronic coupling Hamiltonian

The vibronic coupling model adopted uses the well-known concept of diabatic electronic

states [47–49]. Contrary to the usual adiabatic electronic states they are not – except for

isolated points in nuclear coordinate space – eigenfunctions of the electronic Hamiltonian.

Adiabatic electronic wavefunctions may have singular first derivatives with respect to the

nuclear coordinates, e.g. at conical intersections of potential energy surfaces [6,7,12]. These

important topological features have emerged as paradigms for non-adiabatic excited state

dynamics [6,7,13,14]. They are thus difficult, if not impossible, to deal with in a quantum

dynamics treatment in the adiabatic basis, because of diverging non-adiabatic – or

derivative – coupling terms.
These singularities are removed by switching to a diabatic electronic basis using

a suitable orthogonal transformation. This is thus the method of choice for quantum

dynamics calculations. To be sure, the derivative couplings cannot be entirely removed in

this way [50], but the remaining terms are non-singular and usually considered negligible

for practical purposes. Also, for our purposes they are neglected, which may be

considered as part of the model assumptions adopted. The potential coupling terms

appearing instead in the diabatic basis are expanded in a low-order Taylor series in some

suitable displacement coordinates. This constitutes the multi-mode vibronic coupling

approach [12] which is used here. For the general case of n interacting electronic states

we decompose the Hamiltonian into a kinetic and potential energy part, TN and V0, of

some reference electronic state, and an n� n potential energy matrix W, describing the

changes in potential energy w.r.t. V0 in the interacting manifold (1 is the n� n unit

matrix):

Ĥ ¼ ðTN þ V0Þ1þW: ð40Þ
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The matrix elements of W are written as follows:

WnnðQÞ ¼ En þ
X
i

k
ðnÞ
i Qi þþ

X
i, j

�ðnÞij QiQj þ � � � ð41Þ

Wnn0 ðQÞ ¼
X
i

ðnn
0Þ

i Qi þ
X
i, j

�ðnn
0Þ

ij QiQj þ � � � ðn 6¼ n0Þ: ð42Þ

The truncation of the Taylor series after the first-order or second-order terms (the latter

being shown here) is coined the linear or quadratic vibronic coupling approach (LVC or

QVC, respectively) [6,7,12].
In typical applications we consider a photo-excitation or -ionization process where TN

and V0 relate to the initial electronic state (usually the ground state), described in the

harmonic approximation. The Qi in Equation (41) are then the relevant dimensionless

normal coordinates (harmonic frequencies !i) and we have

TN ¼ �
X
i

!i

2

@2

@Q2
i

; V0 ¼
X
i

!i

2
Q2

i : ð43Þ

The quantities En appearing in Equations (41), (42) have the meaning of vertical

excitation or ionization energies, referring to the centre of the Franck–Condon zone,Q¼ 0

(Q denotes the vector of all coordinates). Because we take the diabatic and adiabatic basis

states to coincide at this geometry, the En have no counterpart in the off-diagonal elements

of Equation (42). The other parameters appearing in these expressions are called linear or

quadratic coupling constants, in an obvious notation, either intra-state (for n¼ n0) or inter-

state (for n 6¼ n0).
In molecules with symmetry elements, the latter can impose important restrictions on

the modes appearing in the various summations of Equation (41), (42). These are relevant,

in particular, for the linear coupling terms for which they read:

�n � �Q � �n0 � �A: ð44Þ

Explicitly, a given vibrational mode with symmetry �Q can couple electronic states with

symmetries �n and �n0 in first order only if the direct product on the l.h.s. of Equation (44)

comprises the totally symmetric irreducible representation �A of the point group in

question. The generalization to the second-order terms should be apparent, though it is

less restrictive. From Equation (44) one immediately deduces (given an Abelian point

group) that for n¼ n0 only totally symmetric modes enter the Hamiltonian in first order.

Thus – for electronic states of different symmetries – the intra-state and inter-state linear

couplings are caused by different sets of modes [12]. This will indeed be the case for the

examples below, as far as Abelian point groups are concerned. For non-Abelian point

groups there may be electronic states degenerate by symmetry, and the above discussion

has to be suitably generalized. That is, the direct product �n��n has to be replaced by its

symmetric counterpart [51,52], and the indices appearing in Equations (41), (42), should be

extended to cover also the various components of degenerate irreducible representations.

Consequently, also non-totally symmetric modes may appear in the diagonal elements of

Equation (41) in first order. This amounts to the Jahn– Teller effect which is dominated by
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symmetry restrictions even more than for the case of Abelian point groups discussed

above. For details we refer to the large amount of literature in the field [51,52].
Despite the importance of the diabatic basis for dynamical calculations, the adiabatic

representation is useful at least in two different respects. First, the key features of the

adiabatic potential energy surfaces, such as minima of crossing seams, double minima

occurring at a reduced symmetry, etc. are vital to interpreting essential features of the

nuclear dynamics such as spectra and electronic populations [6,12]. Second, the adiabatic

surfaces are also needed to determine the various coupling constants entering Equations

(41), (42) from ab initio electronic structure calculations. The latter necessarily give

adiabatic quantities, at least in a direct sense. The comparison of the adiabatic surfaces

underlying Equations (41), (42) with ab initio results thus allows the parameters such as

coupling constants to be determined by requiring that the corresponding model surfaces

reproduce the ab initio data as well as possible.
For the linear intra-state couplings particularly simple expressions can be given [12],

since these are just the gradients of the potential energy surface with respect to the normal

coordinates of the modes in question:

k
ðnÞ
i ¼

@Vn

@Qi

� 	����
Q¼0

: ð45Þ

Similarly, for a two-state problem with a non-totally-symmetric active mode (coordinate

Qu, frequency !u), the parabolic-plus-hyperbolic shape of the resulting adiabatic potential

curves V1 and V2 [12]

V1,2 ¼ ðE1 þ E2Þ=2þ !uQ
2
u=2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE1 � E2Þ

2=4þ ðQuÞ
2

q
ð46Þ

readily gives the following expression for the inter-state coupling constant:

 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

8

@2ðV1 � V2Þ
2

@Q2
u

����
Q¼0

s
: ð47Þ

In more general situations, such as three states interacting through the same

vibrational mode, the coupling constants may be determined by a least-squares fit of

the model eigenvalues to electronic structure data [53]. A general fitting procedure for any

size of system is also described below in Section 7.
We conclude this section by pointing out that the model nature of the Hamiltonian,

Equations (41), (42), and its potential energy surfaces, apparently introduces restrictions

on the type of problem to be treated, e.g. photo-chemical transformations [13,14]. More

recently, an extension has been proposed and successfully applied, where the model has

been used only for the adiabatic-to-diabatic mixing angle [6]. This so-called concept of

regularized diabatic states [54–56] allows the treatment of general potential energy

surfaces, but at the expense of losing the structural simplicity of the Hamiltonian. As

pointed out above, and will become further apparent below, it is this structural simplicity,

where all operators entering the Hamiltonian are simple products of the coordinates,

which brings the MCTDH algorithm to full power. This would apparently no longer be

the case with general potential energy surfaces appearing within the concept of regularized

diabatic states. Therefore, in the applications presented below, we use the vibronic model
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in the original, direct form as expressed by the Hamiltonian (40)–(42). Despite the

restricted form it will become clear below that the model covers a rich variety of

phenomena and can be applied to truly multi-dimensional problems.

6. Combining the vibronic coupling model with MCTDH

Perhaps the easiest way to show why MCTDH and the vibronic coupling model

Hamiltonian fit so well together is to look at an example. The calculation that really

proved the potential of the MCTDH method was the calculation of the absorption

spectrum of pyrazine explicitely including all 24 vibrational modes [23]. The first two

bands of the absorption spectrum of this molecule provide a classic example of a conical

intersection. The lower band has a well-defined vibrational structure, as expected for

a bound state. The upper band is intense and fairly featureless [57]. This lack of structure

was shown to be due to a conical intersection between the S1 and S2 states, which results in

the short lifetime in the upper electronic state [58].
The pyrazine molecule has 24 vibrational modes. Its equilibrium geometry has a point

group D2h and the coupled S1 and S2 states have B3u and B2u symmetry respectively. Thus,

the quadratic vibronic coupling model Hamiltonian can be written

Ĥ ¼
X
i

!i

2
�
@2

@Q2
i

þQ2
i

� 	
1þ

�� 0

0 �

� 	
þ
X
i2G1

�ð1Þi 0

0 �ð2Þi

 !
Qi

þ
X
ði, jÞ2G2

�ð1Þi, j 0

0 �ð2Þi, j

 !
QiQj þ

X
i2G3

0 i

i 0

� 	
Qi þ

X
ði, jÞ2G4

0 �i, j

�i, j 0

� 	
QiQj ð48Þ

where G1 are the five symmetric modes that appear linearly on the diagonal and G3 the b1g
mode that provides linear coupling between the two states. G2 are the pairs of modes

whose product is totally symmetric and so appear with quadratic and bilinear terms on the

diagonal, and finally G4 are the pairs of modes whose product has symmetry b1g and thus

provide bilinear coupling terms.
A four-mode model, including the coupling mode �10a and three of the a1g modes,

�6a, �1 and �9a, was shown by Domcke and co-workers to be able to reproduce the features

of the S2 spectrum using standard wavepacket dynamics calculations [58]. The envelope,

however, was only reproduced by adding a phenomenological broadening to the spectrum,

damping the autocorrelation function with a fast relaxation time of 30 fs. This must be due

to the coupling between the four-mode ‘system’ and the ‘bath’ provided by the remaining

20 modes.
A simple model coupling the four-mode system to a 20-mode bath was set up and

studied using a path integral method [59] and later MCTDH [37]. This used the correct

pyrazine mode frequencies but suitably chosen linear coupling constants and could not

reproduce the measured spectrum. For this, a full calculation requires the model to be

correctly extended to second order, including the coupling as quadratic and bilinear terms.
The 174 parameters required for the second-order model were calculated by Raab et al.

[23] using the simplest possible method for calculating electronic states: configuration

interaction with single excitations (CIS). The spectrum was then obtained from the

Fourier transform of the autocorrelation function (see Section 3), calculated using the

584 G. A. Worth et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
4
8
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



MCTDH method. After minor adjustment of key parameters, the agreement with the

experimental spectrum is seen to be very good (Figure 2a). Note that a small, 150 fs,

damping has been added to the autocorrelation function to produce this spectrum to allow

for the finite propagation time of the simulation.
The power of the MCTDH method can be seen in the fact that this calculation was at

all possible using the available hardware in 1999. The technical details of the basis sets

used are summarized in Table 1. The rows correspond to different models studied: the

Domcke four-mode model; a 12-mode model that augments these four-modes with the

remaining 8-modes with g-symmetry; the full 24-mode system. Two 24-mode calculations

are listed with different numbers of SPFs. The second column details how the degrees of

freedom were combined together to form multi-dimensional ‘particles’. As discussed in

Section 2.2, this keeps the length of the wavefunction expansion short. The four-mode

calculation used four one-dimensional particles, i.e. four sets of one-dimensional functions

were used as the SPFs. The 12-mode calculation used five particles with, for example,

the �10a and �6a combined together to give a 2D particle. The 24-mode calculation used

eight particles.
The wavefunction expansion length is the total SPF basis size, given by the product of

the number of SPFs per particle, summed over the two states. The numbers are given in

column 3. For the four-mode and 12-mode calculations the expansion length is 10,720 and

45,240 respectively. For the two 24-mode calculations, calculation I has a length of 502,200

and calculation II 2,771,440. The four-mode and 12-mode are both converged with respect

to the autocorrelation function, and hence the spectrum. A full test of convergence could

not be made for the 24-mode calculations, but the number of SPFs for 24-mode II were

chosen so that the population of the highest natural orbital was less than 0.01, suitable for

averaged quantities. A comparison with the smaller 24-mode I calculation supports this.

The autocorrelation function is shown in Figure 2(b) and the all important first two peaks

are nearly identical.
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Figure 2. The absorption spectrum of pyrazine. (a) The experimental spectrum (dashed line)
compared to that calculated using a 24-mode vibronic coupling model Hamiltonian and the
MCTDH method with a large basis set (full line). (b) The calculated absolute value of the pyrazine
autocorrelation function from two 24-mode MCTDH calculations using different basis sizes. Large
basis set (full line), small basis set (dashed line). See Table. 1 for details.
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The SPFs need to be described by a primitive basis set. For this, a harmonic oscillator

DVR basis was used [3], which has been found to be very efficient for such bound-state

problems. The number of functions required for each degree of freedom are given in

column 4. Thus, 40 DVR functions were used for the �10a mode, 32 for the �6a mode, etc.

The primitive basis size for each particle is given by the bracketed numbers so, for

example, the primitive basis size of the 2D particle containing the �10a and �6a modes in the

12-mode calculation is 1280. For efficiency, it is important to keep the primitive basis sizes

for the various particles similar in length.
The total primitive basis, that which would be required in a standard wavepacket

calculation, is given by the product of the number of grid points for all modes. For the

four-mode, the 12-mode and the 24-mode problems these were, respectively: 245,760;

2.6� 1013; and 6.4� 1026. The contraction efficiency of the MCTDH method is then the

ratio of the MCTDH wavefunction expansion length to the primitive basis size. For

these large calculations the expansion length is clearly a much smaller number than the

primitive basis.
Finally, we should mention the resources required for these calculations. For

propagation lengths of 150 fs, the four-mode calculation required only 20 minutes on an

IBM RS/6000 workstation and 16MB memory. Very cheap for a full four-dimensional

quantum dynamics calculation. For the 12-mode calculation on the same machine, this

rose to 10 hours and 45MB memory. For the large 24-mode II calculation, a CRAY T90

vector machine was used and 485 hours of CPU-time was required with 650MB memory.

This is a substantial, but manageable amount of time. The power of the method again can

be seen in that the smaller, 24-mode I, calculation required only 100 hours and 205MB to

Table 1. Technical details of the MCTDH calculations of the absorption spectrum of pyrazine
Ref. [23]. The round brackets denote the combination of vibrational modes, the square brackets the
number of SPFs used for the representation of the wavefunction in the S1 and S2 states. The number
of modes in one combination define the dimensionality of the corresponding SPFs. These SPFs are
represented on a grid whose size is given by the product of the number of grid points used for each
mode of the corresponding combination.

Model Combination of modes Number of grid points Number of SPFs [S1,S2]

4 mode �10a, �6a, �1, �9a 40, 32, 16, 12 [10,8], [16,10], [7,6], [7,6]
12 mode (�10a, �6a), (�1, �9a),

(�2, �6b, �8b), (�4, �5)
(�7b, �8a, �3)

(40, 32), (20, 12),
(4, 12, 24), (24, 8),
(4, 8, 12)

[14,11], [10,8],
[6,6], [7,6],
[5,5]

24 mode I (�10a, �6a), (�1, �9a, �8a),
(�2, �6b, �8b), (�4, �5, �3),
(�16a, �12, �13), (�19b, �18b),
(�18a, �14, �19a, �17a),
(�20b, �16b, �11, �7b)

(40, 32), (20, 12, 8),
(4, 8, 24), (24, 8, 8),
(24, 20, 4), (72, 80),
(6, 20, 6, 6)
(6, 32, 6, 4)

[12,9], [6,5],
[4,3], [5,3]
[4,3], [6,6]
[4,4],
[3,3]

24 mode II same as I same as I [14,11], [8,7],
[6,5], [6,4],
[4,5], [7,7],
[5,5],
[3,4]
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produce a spectrum that is of a good quality. Today, as they require less than 1GB of
memory, all these calculations can be done on a desktop PC.

7. Examples

A number of systems have been treated using the vibronic coupling model. The first was
the butatriene cation [10]. In this molecule, the first excited-state has 2B2u symmetry and
non-adiabatic coupling to the 2B2g ground-state takes place via the torsional mode, which
has au symmetry. This leads to a conical intersection between the two states, the presence
of which is responsible for the ‘mystery band’ seen in the photo-electron spectrum between
the bands expected for the states [60]. The systems treated using the MCTDH method,
which include the butatriene cation, are listed in Table 2. The table shows the property
studied, and the size of the model used. Below, a few calculations are looked at to
demonstrate the work.

7.1. Allene cation

The calculation of the pyrazine absorption spectrum detailed above showed the
importance of including second-order terms for a complete treatment. A further example
where second-order terms must be included into the model to correctly describe a spectrum
is found in the photo-electron spectrum of allene. The equilibrium structure of allene has
the point group D2d. Doubly degenerate states of the ion, labelled 2E, are thus subject to
E� 	 Jahn–Teller coupling, where the symmetry of the state is lowered by coupling to
pairs of modes, one with B1 and one with B2 symmetry. The ~A2E state is further pseudo-
Jahn–Teller coupled to the ~B2B2 state via the doubly degenerate E modes.

The photo-electron spectrum [61] for this coupled band shows a well-structured lower
energy portion that could be explained by the Jahn–Teller coupled ~A band with
progressions from one symmetric stretch and a pair of Jahn–Teller active modes [62,63].

Table 2. Calculations on non-adiabatic systems using the MCTDH method in combination with the
vibronic coupling model Hamiltonian. f is the number of nuclear degrees of freedom and s the
number of electronic states included in the calculations.

Molecule Phenomenon f s Ref.

Pyrazine System-bath IVR 24 2 [46,108]
Pyrazine Absorption spectrum 24 2 [23]
Allene Photo-electron spectrum 15 3 [42]
Benzene Photo-electron spectrum 13 5 [76]
Pentatetraene Photo-electron spectrum 21 5 [71]
Cr(CO)6 Photo-dissociation mechanism 5 3 [73]
Cyclobutadiene Photo-electron spectrum 6 3þ2 [109]
Benzene Time-resolved photo-electron spectrum 3 4 [26]
Butatriene Photo-electron spectrum 18 2 [68,92]
Ozone Photodissociation 3 2 [110]
Furan Absorption spectrum 13 4 [111]
Cyclopropane Photo-electron spectrum 14 4 [112]
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Later work then assigned the diffuse higher part of the spectrum to the pseudo-Jahn–Teller

coupled system [64]. However, the assignment of the lower part of the spectrum was found

to be incompatible with the coupling when looking at all the possible modes as there are

three strongly coupled modes with relevant frequencies. The answer was that the second-

order coupling between these modes leads to significant changes in the frequencies by what

is termed Duschinsky rotation. A simulation with all 15 modes and three states, while still

not in perfect agreement with experiment, supports this [42].
An interesting feature of the allene cation system is that the the doubly-degenerate

ground state wavefunction can be written so that each component has a hole at different

ends of the molecule. This molecule thus provides an interesting model for charge transfer

along a conjugated chain – starting in one component of the ground-state is equivalent to

removing an electron from one end of the molecule. Population transfer between the

components then monitors the transfer. Due to the vibronic coupling this is found to be an

ultrafast process [65].
The problem when including second-order terms is not only the increase in system size,

but also the number of parameters that need to be determined. The linear model for

pyrazine has 13 parameters and the second-order model 174. Similarly, the linear model

for allene has 25 parameters and a further 16 second-order parameters, thought to be the

most important, were added from the many possible. In these examples, the parameters

were calculated by hand from information obtained at a few points on the potential energy
surfaces using the formulae given in Section 5. This quickly becomes a very laborious task

for more modes, especially if many states are involved.
To deal with this fitting problem, an automated scheme has been set up and

implemented as the VCHAM program [66], which is distributed with the MCTDH

package [67]. This was first used to calculate the 79 parameters in a quadratic model of the

butatriene cation [68]. The program sets up appropriate geometries for calculating the

energies along cuts through the potential surfaces, collates the information, and then fits

the parameters so that the model matches the calculated adiabatic surfaces. In a recent

example, the VCHAM procedure has been used to obtain parameters for a vibronic

coupling model of the lowest six excited states of benzene at the CASSCF level, revealing

the different types of coupling present in these states [69]. Going to a quadratic model,
which is necessary in this case for a good fit, requires a large number of parameters which

are not independent.
The allene radical cation demonstrate the utility of this approach. The surfaces for the

~A2E= ~B2B2 coupled states, together with the ~C2A1 have been studied [70]. All four states are

required for a good fit. Furthermore, it was found during the fitting process that satellite

states also had to be included to get the form of the potentials along the low frequency

doubly degenerate modes that are important in the pseudo-Jahn–Teller coupling. Fourth-

order terms were also required along some modes. The procedure also allowed the use of

electronic structure methods for which analytic gradients are not available as only single-

point energies are required.
The quality of the fits along the most important modes is shown in Figure 3. It is

clear that despite the simplicity of the model, it is able to describe the anharmonicity of
the adiabatic surfaces extremely well. The model for the related, but larger,

pentatetraene system has also been calculated and used to interpret the experimental

spectrum [71].
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7.2. Cr(CO)5

By not focusing on just the intersection region, the VCHAM fitting procedure also allows
a better analysis of the global surfaces, and can lead to new findings. For example, the
ground-state adiabatic surface of Cr(CO)5 shows the moat and three minima typical of

Figure 3. [Colour online] Cuts through the PES of allene along normal modes important for the
non-adiabatic dynamics. The potentials show the data from ab initio calculations as points. The lines
are the adiabatic surfaces from the vibronic coupling model Hamiltonian. Taken from [70].
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a second-order Jahn–Teller interaction in the ground-state that is doubly degenerate at D3h

geometries [72]. On fitting the surfaces globally, however, the topology was actually found

to be predominantly due to an (E	A)� e pseudo-Jahn–Teller interaction between the

ground state and the lowest singly degenerate excited state [73]. The dynamics in a pseudo-

Jahn–Teller system are distinct from those in a Jahn–Teller system: in the latter

a wavefunction propagated on the lower adiabatic surface is subject to the geometric phase

effect while in the former it is not [74]. This has consequences for the shape of the evolving

wavepacket.
Calculations were performed using the three-states and the five most important

vibrations, namely the two doubly-degenerate pairs that account for both the Jahn–Teller

and the pseudo-Jahn–Teller coupling in addition to the symmetric breathing mode.

The dynamics after forming the Cr(CO)5 molecule by photo-dissociation is shown in

Figure 4. The results of two calculations are shown: including just the two strongest

coupling modes, and including the five most important. The calculation of the adiabatic

populations of the five-mode model is a huge job – requiring the multi-mode

transformation operator on the full primitive grid (see Section 4) which has 3.3� 1011

points. A Monte Carlo integration scheme was used for this.
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Figure 4. State populations of Cr(CO)5 after formation in the Ã state by photo-dissociation of
Cr(CO)6. The model included the lowest three electronic states and the most strongly coupled modes.
(a) The diabatic state populations and (b) adiabatic state populations including only two modes.
(c) The diabatic state populations and (d) adiabatic state populations including five modes.
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The diabatic populations represent the population of the states with electronic
wavefunctions dominated by chromium d-electron configurations � ~X ¼ d 2

xzd
2
yzd

2
xy,

� ~A ¼ d 2
xzd

2
yzd

1
xyd

1
x2�y2 and � ~B ¼ d 2

xzd
2
yzd

2
x2�y2 , respectively. The system starts in the

diabatic ~A state. In the two-mode calculation, after 100 fs there is a large transfer of
population to both the other states. After another 150 fs there is a further transfer, after
which little is left in the initial state. The transfer is similar, but less smooth in the
five-mode calculation. Earlier transfer is also seen and the second transfer is weaker due to
the spreading of the wavepacket in the larger available space reducing the effect of the
recurrence.

The adiabatic states in this system are effectively �S1
¼ � ~x �� ~B,�S2

¼ � ~A, and
~�S3
¼ � ~X þ� ~B. In these states, the population transfer in the two-mode model is more

dramatic: it is effectively finished after 100 fs, having transferred 90% of the population to
the ground-state. In the five-mode model, the transfer out of S2 is less, and the S3 state
becomes more populated.

Figure 5 plots snapshots of the adiabatic wavepacket motion over the ground and first-
excited states for this system. The plot is in the space of the doubly-degenerate vibrational
mode that has the strongest coupling. The PESs for the lowest two adiabatic states are
shown in the figure, with three minima on the lower state at C4v symmetry, and three
narrow minima on the upper state all due to the pseudo-Jahn–Teller coupling between the
three diabatic states. The intersection between the states is at the centre of the plot at theD3h

geometry. This plane corresponds to pseudo-rotation of the molecule: moving fromminima
to minima corresponds to a rearrangement of the three equatorial carbonyl groups [72].

The dynamics start on the first adiabatic excited state with a C4v structure, distorted
along the Q2 mode. This initial condition is that formed by the sudden removal of a single
carbonyl group and the wavepacket at this time is taken to have the form of the undisturbed
ground-state vibrational eigenfunction for the vibrations. After 80 fs the wavepacket
has reached the D3h geometry and population transfer to the ground-state takes place.
This bifurcates and returns to the D3h centre after 240 fs. There is a small recurrence to the
upper state seen in the adiabatic populations at this time. Finally, the wavepacket on
the ground-state reaches the right-hand side of the well after 340 fs. This time-scale fits the
time-scale of coherent motion measured by Trushin et al. for this system [75]. Note that
the wavepacket on the ground-state in Figure 5 is symmetrical, in contrast to the plot in the
original paper (Figure 8 in [73]). This was due to a plotting error in the analysis.

7.3. Benzene cation

The ability to follow the dynamics in a manifold of coupled states is exemplified by
calculations on the benzene cation [53,76]. The photo-electron spectrum of benzene has
a number of bands in the region 9–20 eV [77]. The surfaces for the lowest five bands
(8 states) have been fitted using the linear vibronic coupling model [53]. These states are all
vibronically coupled and Figure 6 shows the coupling along an effective mode.

Large MCTDH calculations have shown that the model is able to reproduce the
experimental spectrum [76]. These then allow a detailed analysis of the modes important
for the system dynamics. Figure 7 shows the state populations after starting in the
non-degenerate ~C state. The modes required are the symmetric breathing mode and the
doubly degenerate modes with e2g symmetry that provide the Jahn–Teller coupling within
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the ~X and ~B states. The pseudo-Jahn–Teller coupling between the ~B and ~C states is

provided by modes with e2u symmetry, that between the ~X and ~B states by modes with b2g
symmetry. An effective mode was used to model the coupling provided by the pair of

modes with this symmetry.
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Figure 5. Snapshots of the adiabatic wavepacket of Cr(CO)5 after formation from the photo-
dissociation of Cr(CO)6. The right-hand panel shows the upper, S1, state and the left-hand panel the
lower, S0. The dotted lines are contours representing the adiabatic potential energy surfaces. The full
contours represent the wavepacket density. The coordinates are the strongest coupling doubly
degenerate modes.
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The population is seen to decay rapidly from the ~C state and after 200 fs the population

is shared equally by the ~B and ~X states. Initial transfer occurs to the ~B state, followed by

transfer to the ground-state. Similar results were obtained ignoring the degeneracy of the

modes (Figure 7b). These findings are of relevance for the fluorescence dynamics of the

benzene cation. They provide a pathway for ultrafast ~C�! ~X non-radiative relaxation,

and thus explain the absence of emission in this system. Similar calculations have also been

performed for the higher excited states of Figure 6 and have been related to the

fragmentation dynamics of the cation [78]. Finally, the studies have been extended to

the monofluoro derivative [79,80] and also the three difluorobenzene isomers [81] and the

characteristic changes observed experimentally for fluorination been reproduced and

interpreted in this way.

8. Parameterized basis functions: G-MCTDH

In the G-MCTDH method [27] the configurations for the wavefunction ansatz

Equation (1) are written

�JðQ1, . . . ,Qp, tÞ ¼
Ym
�¼1

’ð�Þj� ðQ�, tÞ
Yp

�¼mþ1

g
ð�Þ
j�
ðQ�, tÞ ð49Þ

Figure 6. A schematic diagram of the lowest eight electronic states in the benzene radical cation
shown as a cut along an effective mode. Conical intersections between the states are circled.
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where the first m particles are described by the flexible SPFs described above which are

expressed using the primitive basis functions, and the remaining particles are described by

SPFs which are defined using a small number of parameters. The idea is that by

propagating a limited set of parameters rather than the functions themselves a huge saving

of memory can be made. Part of the system can be treated using the usual grid-based

wavepacket methods described above, and part using the parameterized functions. As the

latter may introduce approximations into the dynamics, in this way a system can be

described using a hierarchy of modes with a ‘full quantum-mechanical’ part coupled to

an ‘approximate quantum-mechanical’ part.
While the method is completely general, and any parametrized form could be used,

a simple and suitable form is the Gaussian:

g
ð�Þ
j ðQ�, tÞ ¼ exp½Q� � �

ð�Þ
j ðtÞ �Q� þ �

ð�Þ
j ðtÞ �Q� þ �

ð�Þ
j ðtÞ
: ð50Þ

The parameterized functions are thus referred to as Gaussian Wavepackets (GWPs). Both

‘thawed’ Gaussians (with a time-dependent width matrix, �ð�Þj ðtÞ) and ‘frozen’ Gaussians
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Figure 7. The population dynamics of the ~X� ~B� ~C system of the benzene radical cation. (a) The
symmetric mode �2 along with the degenerate modes �16, �18 and �19 (Herzberg numbering) as well as
an effective mode with b2g symmetry were included along with all five electronic states. The
populations of ~B and ~X are the sum of the two components. (b) The same calculation, but treating all
modes and states as non-degenerate (five modes and three states). Taken from [76].
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(with a fixed width) have been employed [82,83]. In numerical applications, however,

frozen Gaussians are found to be more robust. In the limit that only GWPs are used to

describe the wavefunction, the method is termed the variational multi-configurational

Gaussian wavepacket (vMCG) method.
Equations of motion can be set up using the variational principle as before. The main

changes to those for the flexible SPFs and A-coefficients are due to the non-

orthonormality of the GWPs. Defining the particle GWP overlap and time-derivative

overlap matrices as

S
ð�Þ
ij ¼ g

ð�Þ
i

��� gð�ÞjD E
ð51Þ

�ð�Þij ¼ i g
ð�Þ
i

��� _g
ð�Þ
j

D E
ð52Þ

and using a configuration overlap matrix

SIJ ¼ �I

���J

� �
ð53Þ

the equation of motion for the A-coefficients can be written

i _A ¼ S�1 K�
X
�

sð�Þ

 !
A : ð54Þ

The equations for the SPFs are unchanged, but it should be noted that the density matrix

elements contain the overlap matrices and Equation (11) must be accordingly re-written.

Finally, the equations of motion for the GWP parameters can be written

i _,ð�Þ ¼ Cð�Þ
� ��1

Yð�Þ ð55Þ

where the parameters have been arranged in a vector, ,.
The elements of C are complicated functions of the overlap and density matrices, and

the elements of Y functions of the mean-fields and Hamiltonian matrix elements.

Yi� ¼
X
l

�il H
ð�0Þ
il � Sð�0ÞS�1H

� �
il

� �
ð56Þ

Ci�, j	 ¼ �ij S
ð�	Þ
ij � Sð�0ÞS�1Sð0	Þ

� �
ij

� �
ð57Þ

where � refers to a parameter and i to a function. The superscripted overlap and

Hamiltonian matrices have elements involving the derivatives of the GWPs with respect

to the parameters

S
ð�	Þ
il ¼

@gi
@i�


@gl
@l	

����
�

ð58Þ

H
ð�	Þ
il ¼

@gi
@i�

 ����Ĥ @gl
@l	

����
�

ð59Þ
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which are simply Gaussian moments. For example, if i�¼ �i
(�)

S
ð�0Þ
il ¼


@gi

@�ð�Þi

����gl
�
¼ gi Qð�Þ

�� ��gl� �
: ð60Þ

Note that, as for the usual SPFs, the projector out of the space spanned by GWP functions

1� P ¼ 1�
X
ij

j giiS
�1
ij hgj j ð61Þ

is contained in both the Y vector and C matrix. This is one of the most important

properties of the MCTDH method, ensuring that changes are made to the basis set only as

dictated by the evolving wavepacket, and ensuring fast convergence.
The method is an exact quantum dynamics method provided all the integrals in the

equations of motion are calculated exactly. In practice, the Hamiltonian matrix elements

are evaluated by making use of a local harmonic approximation (LHA) in which the

potential is expanded to second-order for each GWP

Vj ¼ V0 þ
Xf
�¼1

V0�Q� þ
1

2

Xf
�¼1

V00�	Q�Q	 ð62Þ

where the value V0 and the derivatives V0�,V
00
�	 are evaluated at the centre point.

G-MCTDH can provide a useful link to other types of Gaussian wavepacket methods

and time-dependent coherent-state basis set approaches. Following the work of Heller [84],

most of these methods are based on GWPs that propagate along classical trajectories to

model the true evolving wavefunction. These methods are all based on the well-known

result from quantum mechanics that a wavefunction with a Gaussian shape in a harmonic

potential retains its shape and the centre of the wavepacket follows the classical trajectory.
One can, for example, use a superposition of Gaussian functions with fixed widths,

known as frozen Gaussians [85],

�ðx, tÞ ¼
X
i

giðx, tÞ: ð63Þ

Writing the GWPs as separable products of one-dimensional functions with the form

gjðxÞ ¼ exp
1

�h
ð�ajðx� xjÞ

2
þ ipjðx� xjÞ þ i�jÞ ð64Þ

where aj is the width, � j the phase, and the parameters xj, pj are the position and

momentum of the centre of the function which evolve according to

_xj ¼
pj
m

_pj ¼ �
@V

@xj
,

the classical equations of motion. Due to this underlying classical nature, these methods

are not readily applicable to the description of quantum phenomena such as tunnelling

and curve crossing. More sophisticated methods have been developed [86,87] and even

applied to non-adiabatic systems [88]. These methods, however, suffer in general from
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numerical instabilities, insufficient coverage of the relevant phase space, and the fact that

different initial choices for the representation of the wavefunction can lead to different

results.
The spawning method of Martı́nez and co-workers [89,90] is aimed at describing

non-adiabatic dynamics. It uses the ansatz

�ðx, tÞ ¼
X
j

Ajgjðx, tÞ: ð65Þ

The expansion coefficients introduce the coupling required to describe quantum

phenomena, and have the same time-evolution as the G-MCTDH method,

Equation (54), but the GWP basis functions follow classical trajectories. A clever

algorithm is then used to ‘spawn’ new functions where they are required, e.g. when the

wavepacket bifurcates in a region with strong non-adiabatic coupling. The method has

been applied to a number of problems and successfully explains many observed

phenomena in the photo-chemistry of polyatomic molecules.
Connection from classical-trajectory based Gaussian wavepacket methods to

G-MCTDH can be made by first noting that the Gaussian functions in Equation (50)

and Equation (64) are related by the transformation

�� ¼ 2aq� þ ip�: ð66Þ

Equations of motion for the centre of the G-MCTDH GWPs can be cast in a form that

demonstrates the relationship to semi-classical methods [91]. In general,

_ql	 ¼
pl	
m	
þ _qcorrl	 ð67Þ

_pl	 ¼ �V
0
l	 �

4�2j�
m�

qj	 þ
X
	6¼�

V00j�	ql� þ _pcorrl	 : ð68Þ

where _qcorrl	 and _pcorrl	 are terms containing correlations between the GWPs. If the Gaussians

are uncoupled, for example if the basis set is complete, then these terms can be ignored.

Furthermore, for coherent states in a harmonic potential,

�j� ¼
m�!�
2

; V00� ¼ m�!
2
�, ð69Þ

and the final two terms of Equation (68) cancel. Thus in this limit the GWPs in the

G-MCTDH method follow classical trajectories.
This ideal coherent-state limit generally does not correspond to dynamical situations of

interest and the coupling between GWPs means that they do not follow classical

trajectories. The resulting convergence properties of the coupled trajectories are much

better than classical trajectory based methods. There is also no dependence in the result on

the choice of initial functions – the underlying variational character leads to the same

result for the same number of functions however chosen initially. The coupling between

the GWPs means that the method is also able to treat phenomena such as tunnelling and

non-adiabatic transitions. In one of the first applications of the vMCG method to the
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Henon–Heiles potential, tunnelling was observed, with GWPs escaping from the unbound
potential [83].

The G-MCTDH method, like all the GWP methods, suffers from inherent numerical

instabilities. The GWP phase factors cause fast oscillations in the overlap matrices, which
are difficult to integrate, and the coupling between the expansion coefficients and GWP
equations of motion is strong. And while the result may not depend on the choice of initial

functions the numerics do. The solution is to use the relationship between the GWPs and
an orthonormal set of functions that span the same space. This allows the coefficients to be
propagated in the orthonormal basis (which approximates the MCTDH SPFs) while
calculating all the matrix elements in the GWP basis. The resulting algorithm allows use

of the efficient CMF integration scheme, and stable propagation with good step sizes
results [91].

The first application to non-adiabatic dynamics was a study on the butatriene
cation. The dynamics of this system calculated by different methods is shown in Figure 8.

In (a) a comparison is made between wavepacket dynamics and trajectory surface

~
X(a) (b)

−2

0

2

4

Q
14

−2

0

2

4

Q
14

+++

+

+

+
+

++

+
+

+
+

+ +

++ ++

+

+

+
+
+

+ +

+

+
+

++

++ +

+

+++ +
+

+

+

+

+

+
+
+

+++

+

−2

0

2

4

Q
14

+
+

+ +

+

+

+
+

+
+

+++

+
+ +

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+
++

+

+
+

+ +

+

+

+

+

+
−2

0

2

4

Q
14

+

+
+

+ +

+

+

+
+ +

++ +

+
++

+

+ +
+

+

+

+

+

++

+
+

+

+

+

+

+

++

+

+

+
+

++

+

+

+ ++
+

+

+

+

+

+

+

+
+

+
+

+ +

+

+

+

+

−2

0

2

4

Q
14

+

+
+

+ +

+

+

+
+ +

++ +

+
++

+

+ +
+

+

+

+

+

++

+
+

+

+

+

+

+

++

+

+

+
+

++

+

+

+ ++
+

+

+

+

+

+

+

+
+

+
+

+ +

+

+

+

+

+
+ +

+

+

+ ++

+

++ +
+

+

+

+

+
+

+ ++ +

+

+

+

+
+

++

+
++

+
+

+
+

+

+

+

+

++ +

+

+

+
+

+

+

+
+ +

+++
+

+ ++

+
+ ++

+

++

−90−60−30 0
θ θ θ θ

 30  60  90

−2

0

2

4

Q
14

PES

~
A

1.48

1.38

1.28

1.19

R
CC2

0 fs
+

1.48

1.38

1.28

1.19

R
CC2

++
+

+++
+
++
++

+ + ++

+
++

+
++ ++ +++

+
+
+

+
+

++

+

+ ++
+++

+

+
+

++
+

++
+

+ +

+
+

+ ++
++ ++
+
+

+
+++

+

+
+++

+
++++ ++

+

10 fs

+

1.48

1.38

1.28

1.19

R
CC2

++ +
++++ ++ ++

+
++ +++++++++ +

+

+++

20 fs
+

1.48

1.38

1.28

1.19

R
CC2++

+

+

++
+

+

++++
+

+

+ +
+++

+

+
+

+ +++
+

+

+

30 fs +

1.48

1.38

1.28

1.19

R
CC2+

+
++

+
++ +

+

+

+ +++
+

+

40 fs +

1.48

1.38

1.28

1.19

R
CC2

+
++

+

+ +

+

+
++

++

+

−90−60−30 0  30  60  90

•
PES

 Q
14

 Q
14

 Q
14

 Q
14

−90−60−30 0 30 60 90

 Q
14

0 fs

10 fs

20 fs

30 fs

40 fs

−90−60−30 0 30 60 90

Figure 8. [Colour online] The wavepacket dynamics of the butatriene cation after formation in the
diabatic ~A state. (a) In the top panel, the contours show the adiabatic PESs of the ~X and Ã states in
the space of the main tuning and coupling modes. Lower panels show snapshots of the wavepacket
at the times indicated. The contours are for the full quantum wavepacket the crosses denote the
coordinates from 80 trajectories in a direct dynamics surface hopping study. Taken from Ref. [92].
(b) The wavepacket dynamics on the lower surface. On the left, the density is from a converged
MCTDH calculation. On the right, from a vMCG calculation using 32 GWPs (16 in each state).
Taken from [98].
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hopping [92]. Surface hopping uses a ‘swarm’ of classical trajectories to simulate the

evolving wavepacket. On reaching a region where non-adiabatic coupling is strong

a trajectory may change from one surface to another according to a probability criterion.

This is a simple form of molecular dynamics, easy to implement, applicable to large

systems, and often able to deliver useful information. Surface hopping was introduced by

Tully [93,96] and has been developed widely by Truhlar and co-workers (see [95,96] and

references therein).
The five lower panels represent the evolving adiabatic wavepacket as snapshots of the

density at 10 fs intervals. Eighty trajectories were run, and the coordinates of each are

represented by crosses. These calculations were made using direct dynamics, with the PESs

calculated on-the-fly using quantum chemistry calculations at the CASSCF level

(for a review of direct dynamics see [28,97]). The contours are the adiabatic density

taken from converged MCTDH calculations, using a vibronic coupling model

Hamiltonian fit to the same level of electronic structure theory. The top panel shows

the analytic potential energy surfaces as contours plotted in the space of the two modes

that provide the main non-adiabatic coupling, the central C–C stretch vibration and the

torsional motion. The tight upper cone is on the right-hand side, while on the left the lower

surface shows the double minima and ridge caused by the coupling to the upper state.

The wavepacket snapshots are plotted projected into the same space.
The dynamics start by a vertical excitation to the upper diabatic state. This is shown by

the Gaussian shaped wavepacket on the upper adiabatic surface. A very small portion is

also seen on the lower surface. The wavepacket moves across the upper cone and, after

10 fs, meets the conical intersection. At this point a large population crosses to the lower

state, where it bifurcates and moves down the two channels on the lower adiabatic surface.

After a further 30 fs the wavepacket returns to the intersection region and a recurrence

occurs with population returning to the upper state.
The surface hopping calculations follow the initial dynamics well, with the

trajectories clustering around the wavepacket. Density then appears on the lower surface

at 10 fs and so the time-period for reaching the non-adiabatic region is correctly described.

After this crossing, however, the trajectories no longer stay with the density and spread out

over the surfaces. This is due to the lack of nuclear coherence in the surface hopping
method.

Figure 8(b) compares the full wavepacket on the lower surface with that calculated by

the vMCG method using a small basis set of only 32GWPs [98], 16 in each state.

The approximate wavepacket on the right panel is thus created using fewer trajectories

than the surface hopping calculations. It is seen to follow the full packet qualitatively,

including the bifurcation, the recurrence and some of the structure.
A more recent study benchmarks the G-MCTDH method, returning to the classic

model of pyrazine examined above [91]. A comparison of the vMCG method to the use of

classical GWPs was made to demonstrate the convergence properties. As the model is

a second-order polynomial the converged result is identical to the full MCTDH one.

Figure 9 shows the autocorrelation function for the four-mode pyrazine model in the two

cases. The vMCG method already has the first peak correct with a mere 40 basis functions
(20 in each state), and is converged with 160. In contrast the classical GWPs require a few

hundred basis functions to get the first few peaks reasonable, and the autocorrelation is

still not converged with many thousand functions.
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A demonstration of the potential of the method is given in a 10-mode pyrazine model

study. This takes the usual four-mode model and adds a further six-modes selected so that

the autocorrelation function has a strong similarity to that from the full 24-mode

calculation. The resources required are listed in Table 3 for calculations producing

a converged 300 fs autocorrelation function using MCTDH, G-MCTDH and vMCG.

Frozen Gaussians were used throughout.
The 10-modes were combined together into four-particles. In the MCTDH calculation,

a primitive basis set of harmonic oscillator DVR functions was used for each mode. The

numbers of these functions for each particle are listed in the first column. The single-particle

functions were then described on a grid that is a product of the one-dimensional primitive

grids. Thus, for example, the first particle had a primitive grid of 40� 32¼ 1280 points.
The G-MCTDH calculation treated the four-mode system using a primitive grid and

the remaining modes using GWPs. The vMCG calculation treated all particles using

GWPs. The number of SPFs or GWPs used for each particle are then listed, with a number

Figure 9. The autocorrelation function from a four-mode model of the S1/S2 manifold of pyrazine
after vertical excitation to the S2 state comparing vMCG to classical GWPs. (a) vMCG 40 (dashed),
120 (dotted) and 160 GWPs (bold line) (b) classical GWPs 160 (dotted), 3794 (dashed) and 94,320
(bold line) GWPs. Reproduced from [91].
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for each state. Thus the MCTDH calculation required 14 SPFs for the �10a, �6a particle in
the lower, S1, state and 11 SPFs for the upper, S2 state, while the vMCG calculation

required 60GWPs for this particle in both states.
The line Num (SPFs) shows how many numbers were required to represent the SPFs

and GWPs. For the MCTDH calculation this is the number of grid points per function

multiplied by the number of functions. For the GWPs each function requires one number

per mode plus one (�ð�Þj , �j). The effect of the fewer numbers required to represent the

parametrized GWP functions is clear. The line Num (A-vec) is the number of expansion

coefficients in the A-vector. Here it is clear the effect of the larger number of GWPs

required compared to the SPFs. This is particularly the case for vMCG, where a lot of

GWPs are needed to describe the wavepacket in the space of the strongly coupled modes.
The final effect of the payoff for fewer numbers to describe the basis functions using

GWPs against the resultant more configurations is seen by the memory and CPU usage

which are both smallest for the G-MCTDH calculation. Only 49MB of memory and 3

hours of CPU-time is not much for a 10-mode quantum dynamics calculation of an

autocorrelation function out to 300 fs. It should be noted here that a reasonable spectrum

can be obtained using G-MCTDH with an SPF/GWP basis of [12,9], [6,5], [8,8], [10,10]

functions for the particles in the order listed in the table. This required only 24MB and

0.75 hrs and is shown in Figure 10. The peaks are all in the correct places, and the

intensities are not far off. Thus the essential physics of the problem is being well described

in a very cheap calculation.

9. Summary and conclusions

Conical intersections are now known to be ubiquitous in photo-chemistry, and an

understanding of their properties is essential, yet difficult due to fact the nuclear and

Table 3. Computer resources used for calculations of the absorption spectrum of the pyrazine
molecule using a 10-mode model. The upper part of the table details the single-particle function and
primitive basis. Column 1 lists the modes and how they were combined into particles. Column 2 gives
the no. of harmonic oscillator DVR functions used for each mode. Columns 3–5 give the no. of
single-particle functions used for each particle and each state using different methods. The lower part
of the table details the resources required for each calculation. The first row shows how many
numbers are required to describe the single-particle functions and GWPs. The second row how many
numbers are required to describe the A-vector. The third and fourth rows show the memory and
cpu-time required.

Modes N n (MCTDH) n (G-MCTDH) n (vMCG)

�10a, �6a (40, 32) 14, 11 14, 11 60, 60
�1, �8a (20, 12) 8, 7 8, 7 60, 60
�2, �6b, �8a, �8b (4, 8, 8, 24) 10, 10 20, 20 20, 20
�19b, �18b (72, 80) 10, 10 20, 20 20, 20

Num (SPFs) 273, 680 35, 900 1040
Num (A-vec) 18, 900 91, 600 2, 880, 000
Memory (MB) 148 49 406
CPU (hours) 11 3 58
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electronic motion is coupled in this region. The nuclear dynamics must therefore be
described using quantum mechanics, and the number of modes often coupled together in
these systems is beyond the reach of most quantum dynamics methods.

The MCTDH method is a powerful tool, able to handle more nuclear degrees of
freedom than standard wavepacket dynamics. The properties of the method, and how this
is useful for multi-dimensional dynamics has been outlined above. In particular, the
MCTDH equations conserve the norm and, for time-independent Hamiltonians, the total
energy. MCTDH simplifies to Time-Dependent Hartree when only one basis function is
used for each mode. Increasing the basis size recovers more and more correlation, until
finally the standard method (i.e. propagating the wavepacket on the primitive basis) is
used. Hence with MCTDH one can almost continuously switch from a cheap but less
accurate calculation to a highly accurate but expensive one. This is a useful characteristic
in the study of multi-dimensional systems.

The vibronic coupling model Hamiltonian provides a good starting point for the
realistic study of photo-chemical systems in which non-adiabatic effects play an
important role. It is also in the right form for MCTDH. In its simplest form, the
linear vibronic coupling model, it has been shown to correctly describe the dynamics of
a system as it passes close to and through a conical intersection connecting different
electronic states. Extensions to higher orders then add more details, important for
describing the dynamics at longer time-scales and at geometries away from the
intersection. In this context recent work by Viel and Eisfeld should be mentioned.
They have studied the importance of high order (up to the sixth power) terms on Jahn–
Teller [99] and pseudo-Jahn–Teller systems [100] and applied the theory to the photo-
dissociation of the ammonia cation [101].

Fitting the model to the adiabatic surfaces provided by electronic structure calculations
provides a suitable way of providing the diabatic surfaces and couplings required without
the necessity of defining the diabatic functions themselves. In fact the model provides
a good way of providing these functions. The use of fitting routines can provide the many

Figure 10. The spectrum from a 10-mode model of pyrazine using a converged MCTDH calculation
(bold line) and a small G-MCTDH calculation (dashed line). See text for details.
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required parameters in a semi-automatic way from a small number of single-point ab initio
calculations at suitable points.

Non-adiabatic dynamics is by its nature multi-dimensional: often the motion of
a number of modes is coupled. Here the power of the MCTDH method has proved very

successful in studying these systems. The form of the vibronic coupling model is
automatically in the form required, and calculations including 10 or more modes and
a number of electronic states are presently feasible. The systems studied to date have
provided an invaluable insight into the dynamics of these systems.

On-going work will enable more modes to be treated with greater accuracy. The

G-MCTDH is a step in this direction. A different approach, not covered in this review, is
the multi-layer formalism implemented by Wang [102]. At the lowest level, the wavepacket
is made up of an MCTDH wavefunction high-dimensional SPFs. These are then
propagated using the MCTDH algorithm itself in a next layer using lower dimensional

SPFs, and so on. In this way a spin-boson problem including thousands of modes can be
treated [102]. This approach could tackle systems of hundreds of atoms, and be the way
forward in using quantum dynamics to treat general chemical problems. Recent studies on
proton transfer in condensed phases [103] and the electron transfer dynamics in the dye

molecule coumarin bound to a semiconductor surface [21] highlight this potential.
A final development to be mentioned is the effective mode formalism [104–106]. This

formalism will certainly help by providing a framework for the reduction of a huge system.
After dividing the modes into a ‘system’ and a ‘bath’, the vibronic coupling model can be
reformulated in a hierarchy of Hamiltonians, enabling an analysis of the important
dynamics with a limited effort. This has been used, for example, to study the quantum

dynamics in semi-conducting polymers [107].
The study of non-adiabatic systems is becoming a cornerstone of our understanding of

photo-induced processes. Non-adiabatic systems are, however, naturally multi-dimen-
sional quantum mechanical problems and thus hard to treat rigorously. In this review we
have demonstrated how a combination of the vibronic coupling model Hamiltonian and

the MCTDH wavepacket propagation algorithm can provide detailed information on real
chemical physics problems. Future developments of the MCTDH method were also
outlined that, together with extending the model to higher orders, will continue to enhance
the ability to treat truly polyatomic – and even condensed phase – systems in greater detail

with the requisite accuracy.
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[78] I. Baldea and H. Köppel, J. Chem. Phys. 124, 064101 (2006).

[79] I. Baldea, J. Franz, P. G. Szalay, et al., Chem. Phys. 329, 65 (2006).
[80] E. Gindensperger, I. Baldea, J. Franz, et al., Chem. Phys. 338, 207 (2007).
[81] S. Faraji, H.-D. Meyer, and H. Köppel, J. Chem. Phys. In press (2008).
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